Comparison of the Beta and the Hidden Markov Models of Trust in Dynamic Environments

نویسندگان

  • Marie Elisabeth Gaup Moe
  • Bjarne E. Helvik
  • Svein J. Knapskog
چکیده

Computational trust and reputation models are used to aid the decisionmaking process in complex dynamic environments, where we are unable to obtain perfect information about the interaction partners. In this paper we present a comparison of our proposed hidden Markov trust model to the Beta reputation system. The hidden Markov trust model takes the time between observations into account, it also distinguishes between system states and uses methods previously applied to intrusion detection for the prediction of which state an agent is in. We show that the hidden Markov trust model performs better when it comes to the detection of changes in behavior of agents, due to its larger richness in model features. This means that our trust model may be more realistic in dynamic environments. However, the increased model complexity also leads to bigger challenges in estimating parameter values for the model. We also show that the hidden Markov trust model can be parameterized so that it responds similarly to the Beta reputation system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

Modeling Context Aware Dynamic Trust Using Hidden Markov Model

Modeling trust in complex dynamic environments is an important yet challenging issue since an intelligent agent may strategically change its behavior to maximize its profits. In this paper, we propose a context aware trust model to predict dynamic trust by using a Hidden Markov Model (HMM) to model an agent’s interactions. Although HMMs have already been applied in the past to model an agent’s ...

متن کامل

Estimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models

A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...

متن کامل

HMM-Based Trust Model

Probabilistic trust has been adopted as an approach to taking security sensitive decisions in modern global computing environments. Existing probabilistic trust frameworks either assume fixed behaviour for the principals or incorporate the notion of ‘decay’ as an ad hoc approach to cope with their dynamic behaviour. Using Hidden Markov Models (HMMs) for both modelling and approximating the beha...

متن کامل

Learning Trust in Dynamic Multiagent Environments using HMMs

In open multiagent systems, agents are owned by a variety of stakeholders and can enter and leave the system at any time. Therefore, trust is a fundamental concern in effective interactions which is a key component of such systems. In this paper, we propose a trust model for autonomous agents in mulitagent environments based on hidden Markov models and reinforcement learning. By this combinatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009